
Custodia Security

IVX v2 Review
Conducted By: Ali Kalout, Ali Shehab



Contents
1. Disclaimer 3
2. Introduction 4
3. About IVX 4
4. Risk Classification 5

4.1. Impact 5
4.2. Likelihood 5
4.3. Action required for severity levels 6

5. Security Assessment Summary 6
6. Executive Summary 6
7. Findings 9

7.1. Critical Findings 9
[C-01] BrokerRepo, ReserveRepo, and RewardsRepo are missing onlySystem
modifier 9
[C-02] Buy Call max reserves are being used for Sell Put positions 10
[C-04] Settlement and liquidation will always misbehave and result in wrong results
because _closeAllPositionsContracts is closing contracts before releasing the position
reserves 12

7.2. High Findings 14
[H-01] Swap amount in is being used as the swap amount in
_swapPortfolioCollateralTokens 14
[H-02] The settlement payoff depends on the spot price 15

7.3. MediumFindings 16
[M-01] RewardsTracker::_transferToTreasury should subtract the unclaimed
claimable amount before transferring it to the treasury 16
[M-02] Sunset stable tokens are not included in
TokenWeightBalancer::getTokensPriorityOrdered 16
[M-03] All reserves calculations should be rounded up, in favor of the protocol 17
[M-04] IVLP token transfer functions don't return true on successful transfers 17
[M-05] Wrong entry fee calculation 18
[M-06] Wrong token out used when swapping collateral tokens 18
[M-07] Liquidation favors the fee splitter over the liquidator, when distributing fees,
lowering the liquidation incentive 19
[M-08] Allow swap failures, so the whole system doesn't get DOSed 19
[M-09] Wrong calculation of minPrice in calculateBSPrices and
BlackScholesPrices_Vega_Delta 20
[M-10] Invalid validation in DiemOptions::_validateCloseOption, blocking users from
closing their positions if the minimum number of contracts was increased 20

7.4. Low Findings 22
[L-01] FeeSplitter::_distributeFees function doesn't check if there are valid



distributions, leading to underflow 22
[L-02] Wrong condition used in _isLiquidatableMMR 22
[L-03] Withdraw should revert if canWithdraw is false 22
[L-04] Feesplitter::splitFees and FeeSplitter::collectReceiverFees should use
getWhitelistedTokens instead of getActiveTokens 23
[L-05] RewardsTracker::claimableRewards returns rewards with wrong decimals 23
[L-06] Users can force tokens to not be removed 23
[L-07] Unbounded ceiling of amounts 24
[L-08] Calculating the deviation in TokenWeightBalancer while depending on the
entry/exit will sometimes result in wrong results 24
[L-09] Missing slippage protection on deposit, withdrawal, and open position 25
[L-10] Static fee is used for swap pools 25



1. Disclaimer

A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise,
aiming to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of IVX’s smart contract.

3. About IVX

Decentralized options AMM tailored for zero days to expiry contracts, with a
primary focus on crypto and real-world assets, providing high leverage
exposure of up to 200x, all through an industry-leading lucid user
experience



4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

● High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

● Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

● Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

● High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost..

● Medium: The attack vector is conditionally incentivized but still
relatively likely.

● Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.



4.3. Action required for severity levels

● Critical: Must fix as soon as possible
● High: Must fix
● Medium: Should fix
● Low: Could fix

5. Security Assessment Summary

Repository: IVX-FI/ivx-contracts

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
IVX to review IVX. In this period a total of 28 issues were uncovered.

Findings Count

Severity Amount

Critical 4

High 2

Medium 12

Low 10

Total Finding 28



Summary of Findings

ID Title Severity Status

[C-01] BrokerRepo, ReserveRepo, and RewardsRepo are missing
onlySystem modifier

Critical Resolved

[C-02] Buy Call max reserves are being used for Sell Put positions Critical Resolved

[C-03] DiemOptions::forceClosePositions will never work
because of an inversed portfolio existence check in
DiemOptions::_validatePortfolio

Critical Resolved

[C-04] Settlement and liquidation will always misbehave and result
in wrong results because
_closeAllPositionsContracts is closing contracts
before releasing the position reserves

Critical Resolved

[H-01] The swap amount in is being used as the swap amount in
_swapPortfolioCollateralTokens

High Acknowledged

[H-02] The settlement payoff depends on the spot price High Resolved

[M-01] RewardsTracker::_transferToTreasury should
subtract the unclaimed claimable amount before
transferring it to the treasury

Medium Resolved

[M-02] Sunset stable tokens are not included in
getTokensPriorityOrdered

Medium Resolved

[M-03] All reserves calculations should be rounded up, in favor of
the protocol

Medium Resolved

[M-04] IVLP token transfer functions don't return true on successful
transfers

Medium Resolved

[M-05] Wrong entry fee calculation Medium Resolved

[M-06] Wrong token out used when swapping collateral tokens Medium Acknowledged

[M-07] Liquidation favors the fee splitter over the liquidator, when
distributing fees, lowering the liquidation incentive

Medium Acknowledged

[M-08] Allow swap failures, so the whole system doesn't get
DOSed

Medium Acknowledged



[M-09] Wrong calculation of minPrice in calculateBSPrices
and BlackScholesPrices_Vega_Delta

Medium Resolved

[M-10] Invalid validation in
DiemOptions::_validateCloseOption, blocking
users from closing their positions if the minimum number of
contracts was increased

Medium Resolved

[M-11] Price feed might return stale prices Medium Resolved

[M-12] getAmmPnlAndPayOff might differ from the active
positions PnL sum, because of using average p0

Medium Acknowledged

[L-01] FeeSplitter::_distributeFees function doesn't
check if there are valid distributions, leading to underflow

Low Acknowledged

[L-02] Wrong condition used in _isLiquidatableMMR Low Acknowledged

[L-03] Withdraw should revert if canWithdraw is false Low Resolved

[L-04] Feesplitter::splitFees and
FeeSplitter::collectReceiverFees should use
getWhitelistedTokens instead of getActiveTokens

Low Resolved

[L-05] RewardsTracker::claimableRewards returns rewards
with wrong decimals

Low Resolved

[L-06] Users can force tokens to not be removed Low Acknowledged

[L-07] Unbounded ceiling of amounts Low Resolved

[L-08] Calculating the deviation in TokenWeightBalancer while
depending on the entry/exit will sometimes result in wrong
results

Low Acknowledged

[L-09] Missing slippage protection on deposit, withdrawal, and
open position

Low Acknowledged

[L-10] Static fee is used for swap pools Low Acknowledged



7. Findings

7.1. Critical Findings

[C-01] BrokerRepo, ReserveRepo, and RewardsRepo are
missing onlySystem modifier

Severity:
Critical

Description:
BrokerRepo, ReserveRepo, and RewardsRepo are missing onlySystem modifier,
allowing any user to update critical state variables

Recommendations:
Add necessary modifiers to the repo setters so they’re not permissionless.



[C-02] Buy Call max reserves are being used for Sell Put
positions

Severity:
Critical

Description:
When calculating the reserves for SP positions, _ reserveSellPut calls
_calculateMaximumTokenReservations, where _buy should be passed as false,
but it is passed as true.

function _calculateMaximumTokenReservations(

IWhitelistedTokenRepo _whitelistedTokenRepo,

IReserveRepo _reserveRepo,

address _token,

uint256 _totalSupply,

bool _buy

) private view returns (uint256 maxBuyReserve) {

uint256 buyRatio = _whitelistedTokenRepo.getTokenBuyCallRatio(_token);

uint256 sellRatio = _whitelistedTokenRepo.getTokenSellPutRatio(_token);

if (_buy) {

maxBuyReserve = Math.mulDiv(

_totalSupply,

buyRatio,

buyRatio + sellRatio,

Math.Rounding.Floor

);

} else {

maxBuyReserve = Math.mulDiv(

_totalSupply,

sellRatio,

buyRatio + sellRatio,

Math.Rounding.Floor

);

}

uint256 _totalUnreservedAmount = _totalSupply -

_reserveRepo.getTokenTotalReserves(_token);

maxBuyReserve = Math.min(maxBuyReserve, _totalUnreservedAmount);

}

Recommendations:
Pass _buy as false when calculating the reserves of an SP position.



[C-03] DiemOptions::forceClosePositions will never
work because of an inversed portfolio existence check in
DiemOptions::_validatePortfolio

Severity:
Critical

Description:
When force-closing positions, the protocol checks if the target portfolio exists; if not, it
reverts. However, the condition is inversed. If the portfolio exists, the TX reverts, forcing
it to never work.

function _validatePortfolio(

address _portfolio

) private view returns (address) {

IPortfolioOrganizer _portfolioOrganizer = IPortfolioOrganizer(

_getContractAddress(PORTFOLIO_ORGANIZER_CONTRACT)

);

if (_portfolioOrganizer.checkPortfolioExistence(_portfolio)) {

revert SenderHasNoPortfolio(msg.sender);

}

_checkPortfolioLiquidation(_portfolio);

return _portfolio;

}

Recommendations:
Inverse the existence check:
function _validatePortfolio(

address _portfolio

) private view returns (address) {

IPortfolioOrganizer _portfolioOrganizer = IPortfolioOrganizer(

_getContractAddress(PORTFOLIO_ORGANIZER_CONTRACT)

);

- if (_portfolioOrganizer.checkPortfolioExistence(_portfolio)) {

+ if (!_portfolioOrganizer.checkPortfolioExistence(_portfolio)) {

revert SenderHasNoPortfolio(msg.sender);

}

_checkPortfolioLiquidation(_portfolio);

return _portfolio;

}



[C-04] Settlement and liquidation will always misbehave and
result in wrong results because
_closeAllPositionsContracts is closing contracts before
releasing the position reserves

Severity:
Critical

Description:
Both settlement and liquidation call _closeAllPositionsContracts, to close all the
position's contracts and to release that position reserves. However, there's a critical
issue: it closes all the contracts before releasing the reserves, and the releasing uses
_contracts.optionsRepo.getPositionTotalContracts(_positionId).
totalNumberOfContracts will always have a misleading and wrong value as it'll be
wrongly decreased, and in case the position was the last one,
totalNumberOfContracts will be 0 and the TX will revert with "division by 0 error".

Proof of Concept:
function test_SettleDOS() public {

vm.startPrank(bob);

address portfolio = portfolioOrganizer.createPortfolio();

WBTC.transfer(portfolio, 1e8);

WETH.transfer(portfolio, 1e18);

diemOptions.openPosition(

OpenPositionParams({

token: address(WBTC),

strikePrice: 65_000e18,

expireDate: block.timestamp + ONE_DAY,

positionAction: PositionAction.BUY,

positionType: PositionType.CALL,

numberOfContracts: 1_00

})

);

vm.stopPrank();

vm.warp(block.timestamp + epochRepo.getCurrentEpochEndTimestamp());

_setAvgPrices();

vm.prank(coordinator);

optionsManager.setEpoch(block.timestamp + ONE_DAY);

vm.prank(alice);

vm.expectRevert(stdError.divisionError); // panic: division or modulo by zero (0x12)

settler.settlerPortfolio(portfolio);

}



Recommendations:
This can be fixed by either of the following:

● Move the reserve releasing logic in _closeAllPositionsContracts to be
before closing contracts (_closePositionContracts).

● Cache _contracts.optionsRepo.getPositionTotalContracts(_positionId) before
closing contracts, and use it when releasing the position reserves.



7.2. High Findings
[H-01] Swap amount in is being used as the swap amount in
_swapPortfolioCollateralTokens

Severity:
High

Description:
When a swap happens in _swapPortfolioCollateralTokens, the protocol
expects an amountToSwap to be sent to the receiver, and amountToSwap is
subtracted according to the amount in for the swap. When swapping an X amount of
token into Y amount of token out, the USD value of X is >= USD value of Y, however,
the protocol assumes that they're always equal.

A loss will occur but won't be registered/saved, this is because you're using the amount
In USD as the amount that will be sent to the receiver (let's say it's the vault in the
collectLossFromPortfolio case), the protocol will register that it received X USD
(amount it), while it'll receive Y USD (amount out), so X - Y is loss that the vault suffered
but without it being registered.

Recommendations:
_amountToSwap should be subtracted according to the USD value of the swapped
amount out resulting from the "exact in" swap.



[H-02] The settlement payoff depends on the spot price

Severity:
High

Description:
The settlement payoff depends on the spot price, where it should be constant as the
factors should only depend on the epoch that has passed.

Proof of Concept:
Case 1:
Avg entry price: 460 $
Avg price: 65k $
Spot price: 50k $
Strike price: 65k $
Payoff: -350 $

Case 2:
Avg entry price: 460 $
Avg price: 65k $
Spot price: 70k $
Strike price: 65k $
Payoff: -495 $



7.3. MediumFindings

[M-01] RewardsTracker::_transferToTreasury should
subtract the unclaimed claimable amount before transferring
it to the treasury

Severity:
Medium

Description:
User can recalibrate their rewards and claim them later. These unclaimed claimable
rewards aren't taken into consideration when transferring the rewards to the treasury
RewardsTracker::_transferToTreasury.

Recommendations:
When transferring the rewards to the treasury, the unclaimed claimable rewards should
be subtracted from the total balance.

[M-02] Sunset stable tokens are not included in
TokenWeightBalancer::getTokensPriorityOrdered

Severity:
Medium

Description:
When getTokensPriorityOrdered is called for exit L236, _sunsetStableTokens
is computed but never used and not concatenated to the returned _sunsetTokens.

Recommendations:
Concat and return the computed sunset stable tokens in
TokenWeightBalancer::getTokensPriorityOrdered.



[M-03] All reserves calculations should be rounded up, in
favor of the protocol

Severity:
Medium

Description:
All reserves calculations should be rounded up, in favor of the protocol, in
_reserveBuyPut, _reserveSellPut, and _reserveSellCall.

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#
L322-L339

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#
L394-L402

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#
L434-L442

[M-04] IVLP token transfer functions don't return true on
successful transfers

Severity:
Medium

Description:
IVLP token transfer functions don't return true on successful transfer.

Recommendations:
function transfer(address _to, uint256 _value) public override returns (bool) {

_recalibrateRewards(_msgSender());

_recalibrateRewards(_to);

- super.transfer(_to, _value);

+ return super.transfer(_to, _value);

}

function transferFrom(address _from, address _to, uint256 _value) public override returns

(bool) {

_recalibrateRewards(_from);

_recalibrateRewards(_to);

- super.transferFrom(_from, _to, _value);

+ return super.transferFrom(_from, _to, _value);

}

https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#L322-L339
https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#L322-L339
https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#L394-L402
https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#L394-L402
https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#L434-L442
https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/PoolReserver.sol#L434-L442


[M-05] Wrong entry fee calculation

Severity:
Medium

Description:
The user should pay a fixed fee if the amount he adds is less than or equal to the target
weight. However, if he is adding an amount that makes the real weight > target weight
more fees should be taken from the user. This is not happening in the code
(_calculateEntryFees) due to the calculation of the new fee factor.

Recommendations:
Have a minimum amount of entry fee that should be paid by the users.

[M-06] Wrong token out used when swapping collateral
tokens

Severity:
Medium

Description:
According to Bob and the docs, the remaining collateral tokens will be swapped to the
most unbalanced token (the docs mention that it has to be stable, but Bob confirmed
that it could also be tradable).
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/Account
antResolverLib.sol#L137
_collectableTokens is indeed sorted, but after cutting losses, the balances could
change, and the swap step could be swapping for a token that is balanced or not the
most unbalanced token.
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/Account
antResolverLib.sol#L228

It's just using the first stable token, regardless of the balance of that token.

https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L137
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L137
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L228
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L228


[M-07] Liquidation favors the fee splitter over the liquidator,
when distributing fees, lowering the liquidation incentive

Severity:
Medium

Description:
Upon liquidation, fee distribution favors the fee splitter cut over the liquidator, which can
lower the incentive for liquidation. When liquidating a portfolio whose weight is just over
the loss, the liquidator will get nothing in return, as it'll try to fulfill the fee splitter cut first.

https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/Portfolio
ResolverLib.sol#L152-L180

Recommendations:
Favor the liquidator over the fee splitter, to increase the liquidation incentive.

[M-08] Allow swap failures, so the whole system doesn't get
DOSed

Severity:
Medium

Description:
Swapper executes different swaps, it also provides a strict deadline and a slippage
factor, which is correct, however, this makes the swap vulnerable to reverting, which is
okay and the swap should revert if 1 of the 2 conditions were violated (slippage and
deadline). But the issue here is that if 1 swap reverts, all the TX reverts, i.e. making
collectLossFromPortfolio and collectFeesFromPortfolio, which are used
on multiple occurrences, vulnerable to DOS.

The protocol should allow swaps to fail, by wrapping swaps in a try/catch block, and if a
swap fails the funds should be sent back to the portfolio. That way we make sure that
certain actions, like settlement and liquidation, can't be DOSed, and in the worst-case
scenario some debt will be accumulated.

https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/PortfolioResolverLib.sol#L152-L180
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/PortfolioResolverLib.sol#L152-L180


[M-09] Wrong calculation of minPrice in
calculateBSPrices and
BlackScholesPrices_Vega_Delta

Severity:
Medium

Description:
minPrice is calculated as part of the spot price by dividing the spot price by
minPriceFactor without dividing the answer by the basis scale. The answer is also
divided by a very high decimal in multiplyDecimalRoundPrecise, forcing it to
always be 0 or 1.

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/utils/libs/pricer/Price
r.sol#L290-L292

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/utils/libs/pricer/Price
r.sol#L356-L358

Recommendations:
uint256 minPrice = ((spotPrecise * optionParams.minPriceFactor) /

BASIS_POINTS_DIVISOR).preciseDecimalToDecimal();

[M-10] Invalid validation in
DiemOptions::_validateCloseOption, blocking users
from closing their positions if the minimum number of
contracts was increased

Severity:
Medium

Description:
DiemOptions::_validateCloseOption checks if the user is closing contracts less
than the minimum number of contracts
(https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/core/DiemOptions.sol#L7
63-L768). However, this validation is invalid because it blocks users who have positions

https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/utils/libs/pricer/Pricer.sol#L290-L292
https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/utils/libs/pricer/Pricer.sol#L290-L292
https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/utils/libs/pricer/Pricer.sol#L356-L358
https://github.com/IVX-FI/ivx-contracts/blob/main/src/options/utils/libs/pricer/Pricer.sol#L356-L358


opened with the minimum number of contracts from closing their positions if the
coordinator increases the minimum number of contracts.

Recommendations:
Remove that validation, and allow the user to close as many contracts as he wants. The
validation should only be done on the remaining contracts in the position.

[M-11] Price feed might return stale prices

Severity:
Medium

Description:
PriceFeed::getTokenPrice might return stale prices for tokens, it should:

● Check the updatedAt of the latest round data, each feed has a different stale
period.

● Check if the price is > 0.

[M-12] getAmmPnlAndPayOff might differ from the active
positions PnL sum, because of using average p0

Severity:
Medium

Description:
getAmmPnlAndPayOff might differ from the active positions PnL sum, because of
using average p0, which affects the minted shares when depositing into the Broker.



7.4. Low Findings

[L-01] FeeSplitter::_distributeFees function doesn't
check if there are valid distributions, leading to underflow

Severity:
Low

Description:
FeeSplitter::_distributeFees, loops over the length of the distribution - 1,
however, it doesn't check if there are distributions. In case of no distributions, any TX
that targets the _distributeFees function will revert with an underflow error.
A zero-length check should be added before looping over the distributions.

[L-02] Wrong condition used in _isLiquidatableMMR

Severity:
Low

Description:
According to the docs, a portfolio is liquidatable if MMR rises above some threshold.
However, according to _isLiquidatableMMR, a portfolio is liquidatable if its MMR is
greater or equal to the threshold, contradicting the docs.

[L-03] Withdraw should revert if canWithdraw is false

Severity:
Low

Description:
PortfolioOrganizer::withdraw should revert if canWithdraw is false, following
the "fail-early and fail-loud" convention.



[L-04] Feesplitter::splitFees and
FeeSplitter::collectReceiverFees should use
getWhitelistedTokens instead of getActiveTokens

Severity:
Low

Description:
Feesplitter::splitFees and FeeSplitter::collectReceiverFees should
use getWhitelistedTokens instead of getActiveTokens, as active tokens don’t
contain sunsetted ones, while sunsetted ones can still accumulate fees, on withdrawal
for example.

[L-05] RewardsTracker::claimableRewards returns
rewards with wrong decimals

Severity:
Low

Description:
RewardsTracker::claimableRewards returns rewards with wrong decimals, where
the answer is not rounded to precise reward token's decimals.

[L-06] Users can force tokens to not be removed

Severity:
Low

Description:
In the pool, after the token has finished the sunset state and the admin decides to
remove the token, it will check if the balance is 0 to be able to remove it.



https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/Pool.sol#L302-L305

Since we are getting the value by checking the balance, an attacker can send 1 wei to
the REWARDS_VAULT_CONTRACT causing it always to revert whenever the admin tries
to remove the token.

[L-07] Unbounded ceiling of amounts

Severity:
Low

Description:
All ceiled computation of amounts should be bounded to the portfolio’s balance, so the
TX doesn’t revert unexpectedly.

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/A
ccountantResolverLib.sol#L93-L98

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/A
ccountantResolverLib.sol#L306-L311

● https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/A
ccountantResolverLib.sol#L395-L400

[L-08] Calculating the deviation in TokenWeightBalancer
while depending on the entry/exit will sometimes result in
wrong results

Severity:
Low

Description:
Calculating the deviation in TokenWeightBalancer while depending on the entry/exit will
sometimes result in wrong results, this is because it is not always looking into the best options.

https://github.com/IVX-FI/ivx-contracts/blob/main/src/ivlp/core/Pool.sol#L302-L305
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L93-L98
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L93-L98
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L306-L311
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L306-L311
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L395-L400
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/libs/AccountantResolverLib.sol#L395-L400


[L-09] Missing slippage protection on deposit, withdrawal,
and open position

Severity:
Low

Description:
Slippage protection should be added to give users higher control over their actions.

[L-10] Static fee is used for swap pools

Severity:
Low

Description:
In Swapper, use the pre-set pool fee for the pair, and have 3000 as the fallback/default value,
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/core/Swapper.sol#L
85.

https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/core/Swapper.sol#L85
https://github.com/IVX-FI/ivx-contracts/blob/main/src/portfolio-management/core/Swapper.sol#L85

